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Abstract

Interest in solar activity has grown in the past two
decades for many reasons. Most importantly for flight
dynamics, solar activity changes the ammospheric
density, which bas important implications for spacecraft
trajectory and lifetime prediction. Building upon the
previously developed Rayleigh-Benard nonlinear dy-
pamic solar model, which exhibits many dynamic
behaviors observed in the Sun, this work introduces new
chaotic solar forecasting techniques.

Our attempt to use recently developed nonlinear chaotic
techniques to model and forecast solar activity has
uncovered highly entangled dynamics. This paper
presents numerical techniques for decoupling additive
and multiplicative white noise from deterministic
dynamics and examines falloff of the power spectra at
high frequencies as a possible means of distinguishing
deterministic chaos from noise that is spectrally white or
colored. The power spectral techniques presented are
less cumbersome than current methods for identifying
deterministic chaos, which require more computation-
ally intensive calculations, such as those involving
Lyapunov exponents and attractor dimension.

1. Introduction

1.1 Review of Solar Activity

Need for Solar Flux Prediction. Solar flux Fyg .7 [radio
flux emitted at a wavelength of A = 10.7 centime-
ters (cm)] is the best indicator of the strength of
ionizing radiations, such as solar ultraviolet and X-ray
emissions, that directly affect the atmospheric density
and thereby change the orbit lifetime of satellites. Thus,
accurate forecasting of solar flux Fio7 is crucial for
spacecraft orbital determination.

Sunspots and Solar Flux. The strong correlation
between sunspots and the solar flux Fio.7 is probably due
to the enhanced radiation from limited areas of the Sun
where sunspots are active.

The dynamics of sunspots and their formation is still a
mystery. They are often more than 1000 degrees Kelvin
cooler than the surrounding photosphere. Although
many explanations for sunspot cooling have been
proposed (e.g., the Biermann field inhibition mecha-
nism and the superadiabatic downilow mechanism), the
huge difference in temperature between sunspots and
their surroundings suggests a similarity with solitons of
multilevel turbulence. One may think of sunspots as
solitons in a fluid turbulent Sun Orbit lifetime is a
function of atmospheric drag, which is a function of
atmospheric density, which in tum is a function of solar
flux. For this reason, spacecraft orbit determination
requires accurate forecasting of solar flux.

Nonlinear Structure in Solar Flux. Until recently, we
had little reason to doubt that weather is in principle
predictable, given enough data. Recently, a striking
discovery changed our perspective: simple determinis-
tic systems with only a few degrees of freedom can
geperate random behavior. When a system exhibits
apparent random behavior that is fundamental to its
dynamics, such that no amount of information gathering
will make the system predictable, the system is
considered to be chaotic. Much evidence supports our
assertion that solar flux signal falls in this category.!: 2
Perhaps paradoxically, chaos is generated by fixed rules
that do not in themselves involve any element of chance.
Theoretically, the future of a dynamic system is
completely determined by present and past conditions.
In practice, however, amplification of small initial
uncertainties makes a system with short-term predict-
ability unpredictable in the long term.

Many people speak of random processes as though they
were a fundamental source of randomness. This idea is
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misleading. The theory of random processes is an
empirical method to deal with incomplete information;
it does not attempt to explain randomness. As far as we
know, the only truly fundamental source of randomness
is the uncertainty principle of quantum mechanics;
everything else is deterministic, at least in principle.
Nonetheless, we call many phenomena, such as solar
dynamics, random, even though we may not ordinarily
think of them in terms of quantum mechanics. Histori-
cally, scientists have assumed that randomness derives
solely from complication. In this paper, we will take the
practical position that randomness occurs to the extent
that a system’s behavior is unpredictable. We believe
that randomness is subjective and a matter of degree;
that is, some systems are more predictable than others
(e.g., solar activity is more predictable than geomagnet-
ic activity).

Solar Activity Prediction. Interest in solar activity has
grown in the past two decades for many reasons. Some
reports claim a correlation between solar activity and
weather on Earth, although a correlation has not yet
been convincingly established. We have some evidence
for the coincident occurrences of the Maunder mini-
mum (a period of little or no solar activity occurring
from 1645 to 1715) and the “Little Ice Age” (a period of
abnormally cold weather). Perhaps most importantly for
flight dynamics, solar activity changes the atmospheric
density, which has important implications for spacecraft
trajectory and lifetime prediction.> The seemingly
random nature of solar flux has misled us for many
decades, causing us to assume that the underlying
physics must necessarily be complex as well. Therefore,
researchers have generally used statistical models to
predict solar activity.# However, new developments in
chaos and nonlinear dynamics allow us to model the
behavior of a system in terms of some invariants directly
extractable from system dynamics, without reference to
any underiying physics. Using chaos theory, we can
predict short-term activity more accurately than with
statistical methods; however, chaos theory imposes a
fundamental limit on long-term predictions.

1.2 Brief Review of Nonlinear
Dynamics

Self-Organization and Attractors. Imagine a very
simple system: a pendulum. The pendulum exhibits two
fundamental degrees of freedom: position and momen-
tum. However, in its stable periodic state (limit cycle),
the pendulum can be described by only one degree of
freedom, the phase angle. Here, the dynamic is attracted
to a lower-dimensional phase space, and the dimension
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of this reduced phase space is equal to the number of
active degrees of freedom in the self-organized system.

Attractors are not limited to zero dimension (fixed
point) or one dimension (limit cycle), but for nonlinear
systems they could be high dimensional and in some
cases even fractional or fractal (strange attractors).

Phase-Space Construction Directly From a Time
Series. When confronted with a complicated physical
system, an experimenter normally measures at regular
and discrete intervals of time the value of some state
variable (e.g., flux Fio7) and records the time series
f(to), f(ty), £(t2),..., with f(t;) € R and t; = tp + iAt. From
the observed time series, the experimenter attempts to
infer something about the dynamics (i.e., the physics) of
the syStem.

From time-delayed values of the scalar time series,
Packard et al.5 have shown that one can embed the time
series into a higher dimensional space. Vectors are
created with components as

1) = [, {t -7, . t = (m-DYIY,

where 1 (time delay) and m (the embedding dimension)
are parameters of the embedding procedure.

An embedding dimension of m > 2D+1, where D is the
fractal dimension of the attractor, almost always ensures
the construction of the topology of the attractor (Takens’
theorem).

If unlimited infinitely precise data are available, almost
any delay time 7 and embedding dimension m > D will
work, at least in principle. However, choosing the
optimal parameters for real data is a nontrivial process.

For example, if T is too large, then the components f(t)
and f(t + (m — 1)v) of the reconstructed vector will be
effectively uncorrelated, which will inflate the esti-
mated dimension. On the other hand, if (m — 1)v is too
small, then the components f(t), ...,f(t + (m — 1)7) will
all be very nearly equal, and the reconstructed attractor
will 100k like one long diagonal line. Generally, T must
not be less than some characteristic decorrelation time,
and (m - 1)r must oot be much greater than this
decorrelation time. Ope such characteristic time is the
local minima of the autocorrelation function.

Largest Lyapunov Exponent of Solar Flux Time
Series. The sum of the Lyapunov exponents is the
time-averaged divergence of the phase-space trajectory;
hence, any dissipative dynamical system will have at
Jeast one negative exponent.

A small positive Lyapunov exponent is an indication of
chaos, and a very large positive Lyapunov exponent is
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an indication of a totally stochastic or random system.
Therefore, the sign of the exponent provides a qualita-
tive picture of a system’s dynamics—a positive expo-
nent represents chaos, a zero expoment represents
marginally stable systems, and a negative exponent
represents periodic systems. The largest Lyapunov
exponent for solar activity is about 0.01.% 5 There, we
have used the well-known technique of phase-space
reconstruction with delay coordinates.%

Toward Forecasting Solar Flux Directly From Its
Time Series. After embedding the solar flux time series
in a state space using the Takens-Packard delay
coordinate technique, one can “leam” the induced
nonlinear mapping using a local approximation. This
will allow us to make short-term forecasting of the
future behavior of our time series using information
based only on past values. The error estimate of such a
technique has already been developed by Farmer and
Sidorowich’:

E = Ce(mﬂ)x‘r N-—(mﬁ-l)fD’

where E: normalized error of prediction (0 < E
< 1, where zero is perfect prediction,
and one is a prediction no better than
average)

order of local approximation
Kolmogorov entropy
forecasting window

pumber of data points
dimension of the amactor.

0 v zZ3dnB

normalization constant.

Using the Farmer-Sidorowich relation, we can find the
prediction horizon T for the zeroth order of local
approximation. Any prediction above Tmax is no better
than average constant prediction:

E(Tow) = 1.

Thus, for m = 0, K is the largest Lyapunov exponent A.
Therefore,

ln
eFlax N-¥/P — 1  or Tpu ~ _Kﬁ(N_)’

_ (M)

T D

Any prediction beyond the indicated horizons is no
better than average value. The connection between the
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local and the global Lyapunov exponents has recently
been found by Abrabanel and Kennel (March 1991) ina
form of power law as

MY = ke + 3o

N = ol

where A(l) = local Lyapunov exponent

1 = length of observed data (observa-
tion window)

v = aconstant dependent to the dynam-
ical system (0.5 < v < 1.0)

¢ = a constant dependent to initial

conditions of the system

Ag = well-known global Lyapunov ex-
ponent

w = frequency of data points.
Because all data are of finite length, using the

Abrabanel-Kennel power law and Farmer-Sidorowich
relation, we can find Ty, as

In(lw)
bl

This means that as 1 increases linearly, Tpax inCreases
logarithmically to a certain asymptotic T because of the
denominator c/1".

Toar —

Therefore, our relation shows that at the asymptote
Tmax = To and dTmay/dl = 0.7 Thus, we can find what
observation window is required for forecasting up to
T,nax Within some confidence level:

1®)
‘%Nﬁ 0, thus Ny ~ e, %, (8) > 2,

where xg (8) is the solutionto e™* (x—1) = 8, and where

Ag
5 = v

is the scaled global Lyapunov exponent.

This result shows that any observation window greater
than lg = N/ will not improve our prediction horizon
To; so more data beyond this limit are not peeded to
understand a dynamical system. This conclusion is
indeed consistent with weather prediction and also with
empirical results concluded from neural networks
training.
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1.3 Analysis of High-Frequency
Power Spectra of a Time Series

Figure 1 shows daily solar flux Fio.7 for four solar
cycles of about 11.5 years (from February 1947 to
November 1991). From the graph, it is clear that some
long-term features show a higher degree of order than
some short-term features. For example, 11.5-year solar
cycles are less stochastic than daily variations. There-
fore, it seems that one may be able to simulate solar
dynamics using only a few degrees of freedom.

It is also clear from Figure 1 that variation of daily
activity for solar cycle maxima is greater than for solar
cycle minima. The flux on the maxima varies by as
much as 150 solar flux units, whereas on the minima the
flux varies by no more than 25 units. To simulate this
phenomenon, we require a long-term variation X (t), a
medium-term variation Xpm(t), and a short-term varia-
tion Xg(t). We therefore assert that solar activity may be
simulated with three degrees of freedom. In this paper,
we attempt to elucidate the inherent structure in these
different time scales and to show that, from the falloff of
the power spectra of each of these variations at high
frequencies, one can deduce whether the signal is
chaotic. The power spectral techniques presented are
less cumbersome than current methods for identifying
deterministic chaos, which require more computation-
ally intensive calculations, such as those involving
Lyapunov exponents and attractor dimension.

Historically, random behavior in systems has been
studied as an effect of noise, (e.g., Brownian motion).
With the emergence of chaos theory, we began to
understand that random behavior can occur intrinsically
in deterministic systems even if the number of degrees
of freedom is small. Recognizing these two sources of
random behavior, it is obviously crucial that we be able
to determine which is the cause in a given case. That is,
we must know whether the observed random behavior
can be described by a small number of deterministic
equations or is more accurately modeled by a stochastic
process. We attempt to provide a partial answer to this
fundamental question.

With our current understanding of chaotic dynamics, we
can calculate the fractal Hausdorff dimension of
attractors, determine the positive Lyapunov exponents,
and thereby distinguish deterministic chaos from
stochasticity. These methods, however, involve many
well-known technical difficulties when applied to time
series data.” What is needed is a tool that allows us 1o
distinguish between deterministic and stochastic ran-
dom behavior without first calculating Lyapunov expo-
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nents, dimensions, and entropies. We attempt to show
that the falloff of the power spectra at high frequencies
and Hilbert transform of our data can furnish such a tool.
Our results indicate that systems that can be described
by deterministic chaos with a few degrees of freedom
should have power spectra that fall off expooentially
and that the stochastic system should decay via a power
law.

Couosider f(t), a ime series that is either stochastic or
chaotic. Let F(w) = F [f(t)] be a Fourier transform of
f(t). If £(t) is differentiable with respect to time, the
Fourier transform of df/dt is: ® F(w). Thus, if F(w)
exists, F(w) must fall off fasterthan 0~ " asw — ©, 50
that the inverse transform of iw F(w) will exist. Now,
the power spectrum of f(t), S{w), is, roughly, SHw)
a | F(w)| 2. It follows that if f(t) is once differentiable,
Si(®) must fall off faster than ™2 Similarly, if the nth
derivative of f(t) exists, then Sfw) falls off faster than
@21, For model systems like the Lorenz model, one
may expect the power spectra of a dynamical system to

fall off faster than any power of ™'

2. Data Analysis

Using interpolation and decimation one can decouple
solar flux time series to three (the dimension of
embedding space) variables, all functions of time.
These three variables are Xj(t), long-term behavior;
Xm(t), medium-term behavior; and X(t), short-term
behavior.

Increasing the Sample Rate of Data. First, we expand
the input time series in length by inserting zeros
between the original data values. Second, we design a
special symmetric finite-duration impulse response
(FIR) filter that allows the original data to pass through
unchanged and interpolates between data points to
minimize the mean-square errors between the interpo-
lated points and their ideal values. Finally, we apply the
filter to the input vector to produce the interpolated
output vector.

This technique, the opposite of decimation, can increase
the sample rate of signal data.

Decreasing the Sample Rate of Data. Decimation, the
opposite of interpolation, can decrease the sample rate
of signal data. First, we low-pass filter the input time
series, and the resulting smoothed signal is resampled at
alower rate. Second, we filter the input time series using
an eighth-order low-pass Chebyshev type I filter in both
the forward and reverse directions to remove all phase
distortion, which effectively doubles the filter order.
Orders above 13 produce numerical instability. Third,
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we take the normalized cutoff frequency for the
low-pass filter to be 0.8/r (r is the sample rate), with
0.05 decibels of ripple in the passband.

Finally, we resample the filtered data with low sampling
rate.

3. Numerical Techniques For
Forecasting Solar Activity

Once we know the state space representation, the next
goal is to fit a model to the data. There are several
methods. The simplest method is to assume that the
dynamics can be written as a map in the form

f

n

= M(fn)'

where the curment state is f,, and f,.| is a future state,
Methods such as the polynomial method, rational
approximation, radial basis functions, neural networks,
and local approximations have been proven successful.
Here we oaly introduce local approximation technique,
which is the method used to structure the computer

program.

Local Approximation. The basic idea is to break up the
domain of M into local neighborhoods and fit different
parameters into each neighborhood. This fit is generally
better than global approximation, especially for large
data sets. Most global representations reach a point of
diminishing returns, where adding more parameters or
data gives only an incremental improvement in accura-
cy. After a certain point, adding more local neighbor-
hoods is usually more efficient than adding- more
parameters and going to higher order. With local
approximation, it is possible to use a given functional
representation efficiently. The key is to choose the local
neighborhood size correctly, so that each neighborhood
has just enough points to make the local parameter fits
stable.

An example of local approximation is first order, or
nearest neighbor, approximation. Look through the data
set for nearest neighbor, and predict the current state
based on what the neighbor did at time T later. We
approximate f(t + T) by f(t,T) = f(t' + T), where
f(t'), is the nearest neighbor of f(t). That is, to predict
tomorrow’s solar flux, we would search the historical
record and find the solar flux pattern most similar to that
of today, and predict that tomorrow’s solar flux pattern
will be the same as the neighboring pattern 1 day later.
First order approximation can sometimes be improved
by finding more neighbors and merging their
predictions, for example, by weighting according to
distance from the current state.

10001298

Implementation of Local Approximation. Finding
neighbors in a multidimensional data set is time
consuming when considering many points. A straight-
forward method is to compute the distance to each point,
which takes approximately N steps for N points. This
can be reduced to roughly log N steps by organizing the
data with a decision tree, such as ak — d tree.®

In this method, the data set is partitioned one coordinate
at a time. We can take the coordinate with largest range
and partition it at its median value. These values are
stored in the tree as keys. It is npow possible to eliminate
many points from consideration when looking for the
nearest neighbors. This way, we minimize processing
time considerably.

3.1 Using Three Degrees of Freedom
to Describe and Forecast Solar
Flux

As described in Section 1.3, we can decouple solar flux
time series to a long-term behavior, X , a medium-term
behavior, Xy, and a short-term behavior, Xs. Figure 4
shows the long-term behavior, and Figure I shows the
combined medium-term and short-term behaviors. The
combined behavior looks like a modulated signal (two
signals multiplied to one another). Going through some
logarithmic decomposition techniques and filtering,
one can get the individual medium-term and short-term
behavxoxs shown in Figures 7 and 10, respectively.

Figures 2, 5, 8, and 11 show the Hilbert transform of
solar activity for Figures 1, 4, 7, and 10, respectively.
This transformation returns a complex sequence; it has a
real part (horizontal axis), which is simply the original
data, and an imaginary part (vertical axis), which
contains the Hilbert transform. The imaginary part is a
version of the original real sequence with a 90° phase
shift. The Hilbert transformed series has the same
amplitude and frequency content as the original real
data and includes phase information dependent on the
phase of the original data. Figures 3, 6, 9, and 12 show
the power spectral deasity with 95 percent confidence
estimation for Figures 1, 4, 7, and 10, respectively. From
the form of these decays (in frequency) it is clear that
one can distinguish whether the data are stochastic (@ ~#
decay) or chaotic (e ~** decay).

From Figures 5 and 8 it is clear that X1 and Xy follow
very distinct trajectories, whereas Xs in Figure 11 is
truly stochastic with no distinct trajectory. Therefore,
using three degrees of freedom, one can forecast solar
activity using chaotic dynamics better than using
stochastic methods.
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Fig. 1. Daily Solar Flux, Its Envelope, and Their Difference

Figures 13 and 14 show predictions using local approxi-
mation technique. Figure 15 shows the difference in
predictions for embedding dimension D = 3 at different
time shifts.

4. Conclusion

In this paper, we have introduced nonlinear techniques
to model and forecast solar activity. Signal analysis
suggested that although solar flux exhibits highly
entangled dynamics, ope can use chaos theory to
forecast the activity using only a few degrees of
freedom.

In view of the difficulty in identifying a stochastic signal
from a chaotic one, we also introduced falloff of power
spectra at high frequencies as a possible means of
distinguishing deterministic chaos from noise that is
spectrally white or colored. This power spectral tech-
nique is less cumbersome than cumrent methods for
identifying deterministic chaos which require more
computationally intensive calculations, such as those
involving Lyapunov exponents and attractor dimension.
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